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THE CROSSING NUMBER OF THE CONE OF A GRAPH∗

CARLOS A. ALFARO† , ALAN ARROYO‡ , MAREK DERŇÁR§ , AND BOJAN MOHAR¶

Abstract. Motivated by a problem asked by Richter and by the long standing Harary–Hill
conjecture, we study the relation between the crossing number of a graph G and the crossing number
of its cone CG, the graph obtained from G by adding a new vertex adjacent to all the vertices in
G. Simple examples show that the difference cr(CG) − cr(G) can be arbitrarily large for any fixed
k = cr(G). In this work, we are interested in finding the smallest possible difference; that is, for each
nonnegative integer k, find the smallest f(k) for which there exists a graph with crossing number at
least k and cone with crossing number f(k). For small values of k, we give exact values of f(k) when

the problem is restricted to simple graphs and show that f(k) = k + Θ(
√
k) when multiple edges are

allowed.
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1. Introduction. Little is known about the relation between the crossing num-
ber and the chromatic number. Albertson’s conjecture [2], whose motivation is to
understand more about this relation, states that if χ(G) ≥ r, then cr(G) ≥ cr(Kr).
This conjecture has been proved [2, 5, 18] for r ≤ 16. It is related to Hajós’ conjecture
stating that every r-chromatic graph contains a subdivision of Kr. If G contains a
subdivision of Kr, then cr(G) ≥ cr(Kr). Thus Albertson’s conjecture is weaker than
Hajós’ conjecture; however Hajós’ conjecture is false for each r ≥ 7 [9].

The cone of a graph G is the graph CG obtained from G by adding an apex, a new
vertex that is adjacent to each vertex in G. Many properties of a graph automatically
transfer to its cone. For example, if G is r-coloring-critical, then CG is (r + 1)-
coloring-critical. During the Crossing Numbers Workshop in 2013, in an attempt to
understand Alberston’s conjecture, Richter proposed the following problem: given an
integer n ≥ 5 and a graph G with crossing number at least cr(Kn), does it follow that
the crossing number of its cone CG is at least cr(Kn+1)?

The answer to Richter’s question is positive for the first interesting case when
n = 5: Kuratowski’s theorem implies that the cone of every graph with crossing
number at least cr(K5) = 1 contains a subdivision of CK5 or CK3,3. It is not hard
to see that each of these two graphs, CK5 = K6 and CK3,3, has crossing number
equal to 3 = cr(K6). Unfortunately, the answer is negative for the next case, as the
graph in Figure 1 shows. This graph has crossing number 3 and a cone with crossing
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Fig. 1. A counterexample to Richter’s question when n = 6.

number at most 6, and this is less than cr(K7) = 9. This motivated us to investigate
the following question.

Problem 1. For each k ≥ 0, find the smallest integer f(k) for which there is a
graph G with crossing number at least k and whose cone has cr(CG) = f(k).

Note that f(k) can also be defined as the largest integer such that every graph
with cr(G) ≥ k has cr(CG) ≥ f(k). There are examples in which the values of cr(G)
and cr(CG) can differ arbitrarily (for instance, if G is the disjoint union of K4’s and
K5’s). What is less clear is how close these values can be.

An upper bound to the function f(k) is obtained from the graph in Figure 1 by
changing the multiplicity of each edge to r. Each drawing of the new graph has at
least 3r2 crossings, and its cone has crossing number at most 3r2 + 3r. This shows
that f(k) ≤ k +

√
3k. Our main result shows that this is close to the best possible.

Theorem 2. Let G be a graph with cr(G) ≥ k. Then cr(CG) ≥ k +
√
k/2.

Thus we have the following.

Corollary 3. For multigraphs we have f(k) = k + Θ(
√
k ).

The paper is organized as follows. Page drawings, a concept intimately related
to drawings of the cone of a graph, are defined in section 2 and used throughout
the subsequent sections. Although there seems to be a connection between 1-page
drawings and drawings of the cone, their exact relationship is subtle. Our proofs are
instructive in this manner and provide further understanding of these concepts.

The proof of our main result, Theorem 2, is provided in section 3. In section
4, we restrict Problem 1 to the case of simple graphs. To distinguish between these
two problems, we use fs(k) instead of f(k). In this paper, a graph is allowed to have
multiple edges but no loops; when our graphs have no multiple edges, then we refer to
them as simple graphs. We find the smallest values of fs by showing that fs(1) = 3,
fs(2) = 5, fs(3) = 6, fs(4) = 8, and fs(5) = 10. These initial values may suggest that
fs(k) ≥ 2k. However, in section 5 we show that

fs(k) = k + o(k)

and provide additional justification for a more specific conjecture that

fs(k) = k +
√

2 k3/4(1 + o(1)).

As we are interested in drawings minimizing the number of crossings, we may
assume henceforth that in all our drawings (a) any two edges have at most one crossing
in common, (b) no two incident edges cross each other, and (c) no three edges share
a common crossing point.

2. Book drawings. In this section we describe a perspective provided by consid-
ering book drawings of graphs, a concept that has been studied for its own sake and has
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interesting applications. Our goal is to prove Corollary 6, a key tool used in the proofs
of Theorems 2 and 7. For a more detailed discussion of book drawings see [4, 8, 17].

For an integer k ≥ 1, a k-page book consists of k half planes sharing their boundary
line ` (spine). A k-page drawing is a drawing of a graph in which vertices are placed on
the spine of a k-page book, and each edge arc is contained in one page. A convenient
way to visualize a k-page drawing is by means of the circular model. In this model
each page is represented by a 2-dimensional unit disk, so that the vertices are arranged
identically on each disk boundary and each edge is drawn entirely in exactly one disk.
In this work we are only interested in 1- and 2-page drawings, and, to be more precise,
in the following problem.

Problem 4. Given a 1-page drawing of a graph G with k crossings, find an upper
bound on the number of crossings of an optimal 2-page drawing of G while keeping
the order of vertices of G on the spine.

In other words, if the drawing of G in the plane is such that all the vertices are
incident to the outer-face (which is equivalent to having a 1-page drawing), what is
the most efficient way to redraw some edges in the outer-face to reduce the number
of crossings? For this purpose, we define the circle graph CD of a 1-page drawing D
of G as the graph whose vertices are the edges of G and in which two elements are
adjacent if and only if they cross in D. Note that CD depends only on the cyclic order
of the vertices of G on the spine.

A related problem was previously formulated by Kainen in [15], where he studied
the outer-planar crossing number of a graph as the minimum number of crossings in
any drawing of G so that all its vertices are incident to the same face. Clearly, the
crossing number of CG is at most the outer-planar crossing number of G. Although
Kainen was interested in finding an n-vertex graph that has the largest difference
between its crossing number and its outer-planar crossing number, for us it will be
useful to consider drawings in which most of the vertices are incident to the same face.

Turning a 1-page drawing into a 2-page drawing is equivalent to finding a biparti-
tion (X,V (CD)\X) of the vertices of CD, each part representing the set of edges of G
drawn in one of the pages. Minimizing the number of crossings in the obtained 2-page
drawing of G is equivalent to maximizing the number of edges in CD between X and
V (CD)\X. The latter problem is known as the max-cut problem. If the graph CD has
m edges, then a well-known result of Erdős [10] states that its maximum edge cut has
size more than m/2. Improvements to this general bound are known (see [11, 12] and a
more recent survey [6]). For our purpose the following bound of Edwards will be useful.

Lemma 5 (Edwards [11, 12]). Suppose that G is a graph of order n with m ≥ 1

edges. Then G contains a bipartite subgraph with at least 1
2m+

√
1
8m+ 1

64 −
1
8 >

1
2m

edges.

In our context, this result translates to the following observation that we will use.

Corollary 6. Let D be a 1-page drawing of a graph G with k ≥ 1 crossings.
Then some edges of G can be redrawn in a new page, obtaining a 2-page drawing

with at most 1
2k −

√
1
8k + 1

64 + 1
8 crossings. Such a drawing can be found in time

O(|E(G)|+ k).

Proof. We can turn a 1-page drawing D with k crossings into a 2-page drawing as
follows. We define the circle graph CD whose vertices are edges of G and whose edges
correspond to crossings in D. By taking a bipartition of V (CD) containing at least
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1
2k +

√
1
8k + 1

64 −
1
8 edges and drawing the edges of G corresponding to one part of

the bipartition in the second page, we obtain a 2-page drawing as claimed. Such a
partition of V (CD) exists by Lemma 5 and can be found in time O(|E(G)| + k) by
the results of Bollobás and Scott [6, Theorem 22].

3. Lower bound on the crossing number of the cone. This section contains
the proof of our main result.

Proof of Theorem 2. Let D̂ be an optimal drawing of the cone CG of G with
apex a, and suppose D̂ has less than k+

√
k/2 crossings. We consider D = D̂|G, the

drawing of G induced by D̂. If we let t be the number of crossings in D, then we have

(3.1) k ≤ t < k +
√
k/2.

For each vertex v ∈ V (G)∪ {a}, let sv be the number of crossings in D̂ involving
edges incident with v. We may assume that, for each v ∈ V (G), sv <

√
k/2. Other-

wise, by removing v and all the edges incident to v, we obtain a drawing of CG − v
containing a subdrawing of G, in which v is represented by the apex, and this drawing
has less than k crossings, a contradiction.

Consider x1,. . . ,xsa , the crossings involving edges incident with a. Since D̂ is op-
timal, each of these crossings is between an edge incident to a and an edge in G. Let
e1,. . . ,esa be the list of edges in G (we allow repetitions) so that xi is the crossing be-
tween ei and an edge incident with a. We subdivide each edge ei in D using two points
close to the crossing xi, and we remove the edge segment σi joining these new two
vertices, in order to obtain a drawing D0 of a graph G0 with t crossings (see Figure 2).

In the drawing D0 all vertices, including the subdivision vertices, are incident
to the face of D0 containing the point corresponding to the apex vertex a of CG in
D̂. For simplicity, we may assume that this is the unbounded face of D0. It follows
that there exists a simple closed curve ` in the closure of this face, containing all the
vertices of G0. Thus, D0 gives rise to a 1-page drawing of G0 with spine `.

Now construct a new drawing of G as follows:
Step 1. Start with the 1-page drawing D0. Partition the edges of G0 according to

Corollary 6, and draw the edges of one part in page 2 outside `.
Step 2. Reinsert edge segments σ1, . . . , σsa as they were drawn in D to obtain a draw-

ing D1 (of a subdivision) of G. These segments do not cross each other, but
they may cross some edges of G0 that we placed in page 2 in Step 1.

Now we estimate the number of crossings in D1. According to Corollary 6, after Step
1 we obtain a 2-page drawing D0 with less than t/2 −

√
t/8 + 1/8 crossings. After

a

D̂
e1

e2

e3

e4
e5

e6D D0

(a) (b) (c)

Fig. 2. A drawing where the crossed edges are cut.
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Step 2 we gain some new crossings between the added segments σ1, . . . , σsa and the
edges of G0 drawn on page 2 in Step 1.

Claim. We can choose the routings of the edges of G0 drawn in page 2 such that
the number of new crossings between σ1, . . . , σsa and the edges drawn on page 2 in
Step 1 is at most (k − 1)/2.

Proof. Let e ∈ E(G) be an edge having ends u, v ∈ V (G). Suppose that

ay1,. . .,ayre are the edges incident to a that cross e in D̂. We may assume that, for
every i, j with 1 ≤ i < j ≤ re, when we traverse e from u to v, the crossing xi = e∩ayi
precedes the crossing xj = e ∩ ayj . It is convenient to let x0 = u and xre+1 = v.

The edges of G0 included in D[e] are the segments of D[e] − {σ1, . . . , σsa}. We
enumerate these edges as τe0 ,. . . ,τere so that τei is included in the xixi+1-arc of D[e].
Note that τe0 is incident to u, while τere is incident to v.

Let T = {τei : e ∈ E(G) and 0 ≤ i ≤ re} be the set of edges of G0. In Step 1,
when we apply Corollary 6 to the edges in D0, we obtain a partition T1 ∪ T2 of T .
Instead of counting how many crossings are between the segments in σ1, . . . , σsa and
the edges in one of the Ti’s when we redraw Ti in page 2, we estimate the number
m of crossings between σ1, . . . , σsa and the edges in T when we draw all the crossing
edges in T in page 2. This will show that one of the two parts, either T1 or T2, can
be drawn in page 2 creating at most m/2 crossings with the segments σ1, . . . , σsa . To
show our claim, it suffices to prove that m ≤ k − 1, and this is what we do next.

For every point p distinct from a and contained in an edge f incident to a, the
depth h(p) of p is the number of crossings in D̂ contained in the open subarc of f
connecting a to p. When we redraw an edge τei in page 2, we can draw it so that it
crosses at most h(xi) + h(xi+1) segments in σ1, . . . , σsa . Such a new drawing of τei is
obtained from letting the segment of τei near to xi follow the same dual path in D that
xi follows to reach a via ayi. Likewise the new end of τei near xi+1 is defined. The
new τei is obtained from connecting the two end segments of τei inside the face of D
containing a.

Let X(a) be the set of crossings involving edges incident to a in D. For every
x ∈ X(a), there are precisely two elements in T , so that when they are redrawn in
page 2, one of its end segments mimics the arc between x and a inside the edge in-
cluding x and a. Each v ∈ V (G) is incident to at most sv edges crossing in D0. Then,
for every v ∈ V (G), there are are most sv edges in T , so that when we redraw them

in page 2, one of their ends mimics the dual path followed by the edge D̂[va]. These
two observations together imply that

m ≤
∑

x∈X(a)

2h(x) +
∑
v∈V

h(v)sv

< 2
∑
v∈V

(1 + 2 + . . .+ (h(v)− 1)) +
√
k/2

∑
v∈V

h(v)

≤
∑
v∈V

h(v)2 + (
√
k/2)sa ≤

(∑
v∈V

h(v)

)2

+ k/2

= s2a + k/2 < k.

Because m is an integer less than k, m ≤ k − 1 as desired.

At the end, we obtained a drawing D1 of (a subdivision of) G with less than
t/2−

√
t/8 + 1/8 + (k − 1)/2 crossings. Using (3.1) it follows that
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cr(D1) <
1

2
(k +

√
k/2)−

√
t/8 + 1/8 + k/2− 1/2 = k +

√
k/8−

√
t/8− 3/8 < k,

contradicting the fact that cr(D1) ≥ cr(G) ≥ k.

4. Exact values of the crossing number of the cone for simple graphs.
In this section, we investigate the minimum crossing number of a cone, with the
restriction of only considering simple graphs. We are interested in finding the smallest
integer fs(k) for which there is a simple graph with crossing number at least k, whose
cone has crossing number fs(k). On one hand, we describe below a family of simple
graphs that shows that fs(k) ≤ 2k. Our best general lower bound is obtained from
Theorem 2. The main result in this section, Theorem 7, helps us to obtain exact
values of fs(k) for cases when k is small.

Theorem 7. Let G be a simple graph with crossing number k. Then
(1) if k ≥ 2, then cr(CG) ≥ k + 3;
(2) if k ≥ 4, then cr(CG) ≥ k + 4; and
(3) if k ≥ 5, then cr(CG) ≥ k + 5.

Before proving Theorem 7, we describe a family of examples that is used to find
an upper bound for fs(k), which is exact for the values k = 3, 4, 5. Given an integer
k ≥ 3, the graph Fk (Figure 3) is obtained from two disjoint cycles C1 = x0 . . . xk−1x0
and C2 = y0 . . . y2k−1y0 by adding, for each i = 0, . . . , k−1, the edges xiy2i−2, xiy2i−1,
xiy2i, xiy2i+1 (where the indices of the vertices yj are taken modulo 2k). It is not
hard to see that Fk has crossing number k: a drawing with k crossings is shown in
Figure 3. To show that cr(Fk) ≥ k, for i ∈ {0, . . . , k−1}, consider Li, the K4 induced
by the vertices in {xi, xi+1, y2i, y2i+1}. Every Li is a subgraph of a K5 subdivision of
Fk; thus, in an optimal drawing of Fk, at least one of the edges in Li is crossed. This
only guarantees that cr(Fk) ≥ k/2, as two edges from distinct Li’s might be crossed.
However, if an edge from Li crosses an edge ej from some other Lj , then Fk−ej has a
K5 subdivision including Li, exhibiting a new crossing in some edge in Li. Therefore,
every Li either has a crossing not involving an edge in another Lj , or there are at
least two crossings involving edges in Li. This shows that cr(Fk) ≥ k.

The graph shown in Figure 4 has crossing number 2, and its cone has crossing
number at most 5. This shows that fs(2) ≤ 5. On the other hand, F3, F4, and F5

serve as examples to show that fs(k) ≤ 2k for k = 3, 4, 5. These bounds are tight for
2 ≤ k ≤ 5 by Theorem 7.

y0

y1

y2

y3

y4

y5

y6

y7

y8

y2k−3

y2k−2

y2k−1

x0

x1

x2
x3

x4

xk−1

Fig. 3. The graph Fk.
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Fig. 4. A graph with crossing number 2 whose cone has crossing number 5.

Proof of Theorem 7. Suppose G is a graph with cr(G) = k. Let D̂ be an optimal
drawing of the cone CG, D its restriction to G, and Fa be the face of D containing
the apex a. The vertices of G incident to Fa are the planar neighbors of a.

Assume that k ≥ 2, and suppose D̂ has exactly k + t crossings. Theorem 2
guarantees that t ≥ 1. Since each edge from a to a nonplanar neighbor introduces at
least one crossing, the apex a has either 0, 1, 2, 3, or 4 nonplanar neighbors (if a has
more than 4 nonplanar neighbors, then all items in Theorem 7 are satisfied).

We start by assuming that a has no nonplanar neighbors. In this case, D is a
1-page drawing of G. Corollary 6 implies that we can obtain a new drawing of G
with less than (k + t)/2 crossings. Thus (k + t)/2 > cr(G) = k, which implies that
t ≥ k + 1. In each case of the theorem, this implies the conclusion; thus we may now
assume that a has at least one and at most t nonplanar neighbors.

(1) Let us now assume that k ≥ 2 and t ≤ 2.
Suppose a has exactly one nonplanar neighbor u. Then D has at most k + 1

crossings. At least one edge incident to u is crossed in D, otherwise, all the crossed
edges have ends in Fa, and using Corollary 6, we obtain a drawing of G with less
than (k + 1)/2 crossings, contradicting that cr(G) = k. If at least two crossings in
D involve edges incident to u, or if D has k crossings, then we obtain a drawing of
G with less than k crossings by redrawing u as the point representing a in D̂ and
adding all the edges from u to each neighbor v of u, by following the corresponding
edge arc connecting a to v in D̂. Therefore D has k + 1 crossings, and exactly k of
them involve edges not incident to u. Again, we apply Corollary 6, but this time we
are more careful by setting our two pages in such a way that the edge not incident
to u that crosses an edge incident to u is redrawn in the page contained in Fa. In
this case we obtain a drawing of G with less than k

2 crossings (note that if we apply
Corollary 6 without the additional assumption, then we only guarantee a drawing of
G with less than k/2 + 1 crossings).

Finally, suppose a has exactly two distinct nonplanar neighbors u and v. Then,
D̂ has k + 2 crossings, D has k crossings, and the edges au, av are crossed exactly
once. Notice that each crossed edge in D is incident to either u or v; otherwise, we can
redraw such an edge inside Fa, obtaining a drawing of G with less than k crossings.
Redraw v as the point representing a in D̂, draw the edge uv (if it exists in G) as the

edge au in D̂, and draw the edges from v to its neighbors distinct from u, inside Fa

without creating new crossings. Since every crossing in D involves an edge incident
with v, we obtain a drawing of G with at most one crossing, a contradiction.

On a side note, our last argument requires G to be simple: it fails when there are
k parallel edges between u and v. The assumption of G being simple is also used in
similar arguments of (2) and (3), when a is replaced by a nonplanar neighbor of a.

(2) Now, suppose that k ≥ 4 and that t = 3.
The case when the apex a has only one nonplanar neighbor u is similar to the

argument in (1). If at least three crossings in D involve edges incident with u, then
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by redrawing u and the edges incident to u in Fa, we obtain a drawing with less than
k crossings, a contradiction. Thus, at most two crossings involve edges incident to
u. We redraw the remaining crossed edges according to Corollary 6 (if there is an
edge e that crosses an edge incident to u, in order to remove an extra crossing, we
may choose this new drawing so that e is redrawn in the page contained in Fa). If
exactly two crossings involve edges incident to u, then the resulting drawing has at
most k

2 + 1 crossings, where the +1 is due to the fact that e was redrawn in the page
contained in Fa. If at most one of the edges at u is crossed, then the new drawing
has at most (k+ 1)/2 crossings. In either case, since k ≥ 4, the new drawing has less
than k crossings, a contradiction.

Let us now consider the case when the apex has two nonplanar neighbors u and
v. In this case, the drawing D has either k or k+1 crossings, and one of {au, av}, say
au, is crossed only once. Let L be the set of crossed edges in D that are not incident
to u or v. Suppose there are at least two crossings involving only edges in L. Then,
either there are two edges in L that do not cross, or L has an edge e that crosses two
other edges in L. In the former case, we redraw such a pair of edges in Fa; in the latter
case, we redraw e in Fa. Both of these modifications yield a drawing with less than
k crossings. Thus, we may assume that at most one crossing in D involves two edges
not incident to u or v. Redraw v as the point representing a in D̂, draw the edge vu (if
this edge exists in G) as au, and redraw the remaining edges from v to its neighbors
distinct from u without creating new crossings. The new drawing of G has at most two
crossings: one, possibly, along av and another between two edges in L, a contradiction.

Finally suppose that the apex a has three nonplanar neighbors u, v, w. In this
case D has precisely k crossings, and the edges au, av, aw are crossed exactly once.
Observe that any crossed edge in D is incident to one of {u, v, w}; otherwise we can
redraw such an edge in Fa, obtaining a drawing of G with less than k crossings.

Let H be the graph induced by {u, v, w}. For x ∈ {u, v, w}, let dH(x) denote the
degree of x in H. Then at most dH(x) crossings in D̂ involve edges at x. Otherwise,
we can redraw x as a and connect x to its neighbors by following the corresponding
edges incident to a.

This gives us a drawing of G with less than k crossings. So for each vertex
x ∈ {u, v, w}, there are at most two crossings involving edges at x. Hence D has at
most three crossings, a contradiction.

(3) Now, suppose that k ≥ 5 and that t = 4.
Let N denote the set of nonplanar neighbors of a. For u ∈ N , let sau denote

the number crossings involving the edge au in D̂, and let s =
∑

u∈N sau. As we did
before, we distinguish cases depending on the size of N . We showed, before proving
item (1), that |N | ≥ 1. We need the following observation.

Claim. If u ∈ N , then the following holds:
(i) At most 4− sau crossings in D involve edges incident to u.

(ii) The number of crossings in which both edges involved are incident to some
vertex in N is at most 2|N | − ds/2e.

Proof. (i) If there are more than 4− sau crossings involving edges at u, then we
redraw u as a and join u to its neighbors using the corresponding edges from a to
V (G). This is a drawing with less than

k + 4− s− (4− sau) + (s− sau) = k

crossings, a contradiction.
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(ii) From (i), we know that for each u ∈ N , there are at most 4− sau crossings in
D involving edges at u. Let us count the number of pairs (u, x) where u ∈ N and x is a
crossing involving an edge incident with u. By (i), the number of such pairs is at most∑

u∈N
(4− sau) = 4|N | − s.(4.1)

This implies (ii).

Case 1. The apex a has exactly one planar neighbor.

From item (i) in the claim, we know that there are at most 4−sau crossings involving
edges incident with u ∈ N . So at least k + 4 − (4 − sau) − sau = k crossings involve
crossing pairs that are not incident to u. We apply Corollary 6 to redraw some cross-
ing edges not incident with u in Fa, and we are careful by choosing our two pages so
that we draw one edge crossing an edge at u (if such an edge exists) in Fa to remove
an extra crossing. We obtain a drawing with at most k + 4 − sau − (k

2 + 1
2 ) − 1 < k

crossings.

Let us define r = cr(D)− k for brevity. Note that r = 4− s.
Case 2. The apex a has two nonplanar neighbors.

In this case 0 ≤ r ≤ 2. Let X be the set of crossings involving an edge none of
whose ends is in N , and let EX be the set of crossing edges having both ends not in
N . We claim that |X| ≤ r.

This is easy to see when r = 0; if |X| ≥ 1, then there is an edge in EX that we can
redraw in Fa to obtain a drawing of G with less than k crossings. Suppose that r = 1.
If |X| ≥ 2, then either there is an edge e ∈ EX including two crossings, or there is a
pair of edges in EX that do not cross each other in D. In the former case we redraw
e in Fa; in the latter we redraw the pair in Fa. In each case, the edges that are drawn
in Fa have no crossings in the new drawing because the order of the endpoints along
the boundary of Fa determines whether two edges cross. In both cases we obtain a
drawing of G with less than k crossings.

Finally, suppose that r = 2. Any edge in EX is involved in at most two crossings;
otherwise we could redraw it in Fa to obtain a drawing of G with less than k crossings.
If |X| ≥ 3, then either there is an edge e ∈ EX crossed twice and an edge f ∈ EX not
crossing e, or every edge in EX is crossed at most once. In the former case, we redraw
e and f in Fa; in the latter, for each crossing in X we pick an edge EX involved in
the crossing and redraw it in Fa. In either case we obtain a drawing of G with less
than k crossings. Therefore |X| ≤ 2.

We conclude that |X| ≤ r ≤ 2. By item (ii), the number of crossings in D is at
most

4−
⌈

4− r
2

⌉
+ |X| ≤ 2 + r/2 + |X| ≤ 2 + 3r/2 ≤ 5.

Since cr(G) ≥ 5, we have that cr(D) = 5, |X| = r = 2, and EX 6= ∅. However,
if we redraw any edge from EX in Fa, we obtain a drawing of G with less than five
crossings.

Case 3. The apex a has three nonplanar neighbors.

In this case cr(D) is either k or k + 1, so r = 0 or r = 1. The argument given in
the previous case shows that there are at most r crossings involving an edge with
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both ends not in N . Using item (ii), we obtain that D has at most 4 + r/2 + |X| ≤
4 + r/2 + r ≤ 5 + 1/2 crossings, where X is defined as in the previous case. Since
cr(D) ≥ 5, this shows that D has exactly five crossings and that |X| = 1. In particular
cr(D) = k and thus r = 0, which contradicts that |X| ≤ r.

Case 4. The apex has four nonplanar neighbors.

In this case s = 4, cr(D) = k, and say = 1 for every y ∈ N . Let N = {u, v, w, x}.
Note that each crossing edge is incident to a vertex in N , because otherwise we could
reroute one of the edges through Fa and reduce the number of crossings. By item (i),
there are at most three crossings involving edges incident to a fixed vertex in N , and
by (ii), cr(D) ≤ 6. Moreover, the count (4.1) in the proof of (ii) shows that cr(D) = 5
if there is an edge with both ends in N that is involved in a crossing.

LetH be the graph induced byN . We distinguish two cases depending on whether
D[H] is a crossing K4 or not.

Subcase 1. D[H] is not a crossing K4.

If H = K4, then D[H] is a planar K4. This implies that there is a 3-cycle com-
posed of vertices in N , separating a fourth vertex in N from a, and this contradicts
that say = 1 for every y ∈ N . Therefore, there is a pair of vertices in H; say u and
v, with uv /∈ E(G).

Recall that, for y ∈ N , dH(y) denotes the degree of y in H, then at most dH(y)

crossings involve edges at y. Otherwise, by redrawing y in D̂[a], drawing the edges
from y to its neighbors in H by using the respective edges from a; and drawing the
remaining edges at y in Fa without creating new crossings, we obtain a drawing of
G with less than k crossings. Since dH(u), dH(v) ≤ 2 and dH(w), dH(x) ≤ 3, cr(D)
is at most (

∑
y∈N dH(y))/2 = 5. Because cr(D) ≥ 5, this implies that cr(D) = 5,

dH(u) = dH(v) = 2, and dH(w) = dH(x) = 3. This also shows that for each y ∈ N ,
the number of crossings in D involving edges at y is exactly dH(y).

If one of the edges in H is crossed, then at least three of the four vertices are
involved in some crossing belong to N . There are exactly 10 pairs (y, x), where y ∈ N
and x is a crossing in D involving an edge incident with u. At least three of these
pairs involve the same crossing; thus there are at most (10− 3)/2 + 1 = 4.5 crossings
in D, a contradiction. We may assume that none of the edges in H is crossed.

Thus, H is drawn in D with no crossings, and a is drawn in D̂ in the face of D[H]
bounded by the 4-cycle uwvx (see Figure 5(a)).

Let H ′ be the graph induced by N ∪{a}. The only crossings of H ′ in D̂ are those
between the edges at a and the boundary of Fa in D (see Figure 5(b)). This restricted
drawing of H ′ implies that the ends of a crossing pair of edges have exactly one element

Fa

x

u

w

v

D

a

x

u

w
v

(a) (b)

Fig. 5. Subcase 1.
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x
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w

v

D

a

x

u

w
v

β

α

D̂

x

u

w

v

(a) (b) (c)

Fig. 6. Subcase 2.

in {u, v} and exactly one element in {w, x} and none of the two edges has both ends in
N . However, this is not possible, as there are Four crossings involving edges incident
to one of u or v, while there are six crossings involving edges incident to one of w or x.

Subcase 2. D[H] is a K4 with a crossing.

Suppose that uv and wx is the crossing pair in D[H] and that c is the crossing
between uv and wx. Following the same argument given in the previous case, it is easy
to see that for every y ∈ N , there are exactly two crossings distinct from c involving
edges at y; cr(D) = 5; if H ′ is the graph is induced by N∪{a}, then its drawing D[H ′]
is isomorphic to the drawing of the cone of a crossing K4, where the apex is drawn in
the face bounded by the 4-cycle of the K4 and the edges incident to the apex connect
directly to the boundary of the 4-cycle (Figures 6(a) and (b)); and the only crossings of

D̂ in H ′, distinct from c, are those between the edges at a and the boundary of Fa in D.
The restrictions on H ′ show that the ends of a crossing pair of edges distinct from

uv and wx have exactly one element in {u, v} and exactly one element in {w, x} and
none of the two edges has both ends in N .

The boundary walk of Fa contains a cycle C that in D̂ separates a from N . There
are two internally disjoint subarcs α and β of D[C] connecting the crossings between
D[C] and each of aw and ax. We label α and β so that α includes the crossing between
D[C] and au, and β includes the crossing between D[C] and av. The restrictions im-
posed by the crossings in H ′ imply that all the neighbors of u not in N are contained
in α, and likewise the neighbors of v not in N are contained in β.

We obtain a drawing of G with four crossings as follows. Redraw u in the place
of a; join a to each of w and x using the corresponding edges from a to each of w and
x. Draw the edges from u to its neighbors not in N without creating new crossings.
Now redraw v near u in the face bounded by β and the two segments of the new uw,
ux edges (Figure 6(c)). Connect v to each of w and x by following arcs near the new
uw, ux edges. Connect v to the rest of its neighbors without creating new crossings.
Since cr(G) ≥ 5 and this drawing has four crossings, this is a contradiction.

In any case we obtained a contradiction. Thus cr(CG) ≥ k + 5 when k ≥ 5.

5. Asymptotics for simple graphs. Finally, we try to understand the behav-
ior of fs(k) when k is large. The important part is the increase of the crossing number
after adding the apex; thus we define

φs(k) = fs(k)− k.

We have proved that φ(k) = f(k) − k ≥ ( 1
2k)1/2. The term k1/2 is asymptotically

tight in the case when we allow multiple edges. However, it is unclear how large φs(k)
is. This question is treated next.
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Theorem 8. φs(k) = O(k3/4).

Proof. Let us consider a positive integer k, and let n be the smallest integer such
that cr(Kn) ≥ k. Then G = Kn has a crossing number at least k, and its cone is
Kn+1.

To find an upper bound for cr(Kn+1) in terms of cr(Kn), start with a drawing
of Kn with cr(Kn) crossings. Then clone a vertex; that is, place a new vertex very
close to an original vertex and draw the new edges along the original edges. Each
edge incident to the new vertex crosses O(n2) edges; thus the resulting drawing has
cr(Kn) +O(n3) crossings. Therefore

φs(k) ≤ cr(Kn+1)− cr(Kn) ≤ O(n3).

It is known [16] that

3

10

(
n

4

)
≤ cr(Kn) ≤ 3

8

(
n

4

)
.

(The constant 3/10 in the lower bound obtained in [13] has been recently improved
to 0.32025; see [16] for more information. The 3/8 factor follows from the existence
of drawings of Kn having the same number of crossings as in the formula given in the
Harary–Hill conjecture.) Then φs(k) = O(n3) = O(k3/4).

The Harary–Hill conjecture [14] states that

cr(Kn) =

{
1
64n(n− 2)2(n− 4), n is even,

1
64 (n− 1)2(n− 3)2, n is odd.

Proposition 9. If the Harary–Hill conjecture holds, then

φs(k) ≤
√

2 k3/4(1 + o(1)).

Proof. As in the proof of Theorem 8, but with a slight twist for added precision,
we take n such that cr(Kn−1) < k ≤ cr(Kn). We also take n1 such that for k1 =
k − cr(Kn−1) we have cr(Kn1−1) < k1 ≤ cr(Kn1

). Let G = Kn−1 ∪ Kn1
. Then

cr(G) = cr(Kn−1) + cr(Kn1
) ≥ k and cr(CG) = cr(Kn) + cr(Kn1+1). Therefore,

φs(k) ≤ cr(Kn) + cr(Kn1+1)− cr(Kn−1)− cr(Kn1
)

≤ cr(Kn)− cr(Kn−1) + cr(Kn1+1)− cr(Kn1−1).

By inserting the values for the crossing number from the Harary–Hill conjecture,
we obtain (the calculation given is for odd n and odd n1; it is similar when n or n1 is
even) the following:

cr(Kn)− cr(Kn−1) = 1
64 ((n− 1)2(n− 3)2 − (n− 1)(n− 3)2(n− 5)) = 1

16n
3(1 + o(1))

and

cr(Kn1+1)− cr(Kn1−1) = 1
64 ((n1 + 1)(n1 − 1)2(n1 − 3)

−(n1 − 1)(n1 − 3)2(n1 − 5))

= 1
8n

3
1(1 + o(1)).

Noticing that k = 1
64n

4(1 + o(1)) and k1 = 1
64n

4
1(1 + o(1)) = O(n3) because k1 ≤

cr(Kn)− cr(Kn−1), we conclude that n31 = O(n9/4) = o(k3/4) and henceforth

φs(k) ≤ 1
16n

3(1 + o(1)) + 1
8n

3
1(1 + o(1)) =

√
2 k3/4(1 + o(1)).
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The above proof works even under a weaker hypothesis that cr(Kn) = αn4 +
βn3(1 + o(1)), where α and β are constants. This would imply that φs(k) = O(k3/4).
Our conjecture is that Proposition 9 gives the precise asymptotics.

Conjecture 10. φs(k) =
√

2 k3/4(1 + o(1)).

A reviewer of a preliminary version of this paper noted that this asymptotic is
matched when the graph we are considering is dense.

Remark 11. Let G be a graph with n vertices, m edges, cr(G) = k and such that
m ≥ 4n. If m = Ω(n2), then cr(CG) ≥ k + Ω(k3/4).

Proof. First we show that cr(CG) ≥ k+4k/n. Suppose not. Consider an optimal
drawing of CG, and let D be its restriction to G. For v ∈ V (G), let sv be the number
of crossings in D involving edges incident to v. For every v ∈ V (G), sv is less than
4k/n, as otherwise, when we remove v and the edges that connect the apex of CG to
the nonneighbors of v, we obtain a drawing of G with less than k crossings.

Since each crossing contributes to the value sv of four vertices and D has at least
k crossings, 4k ≤

∑
v∈V (G) sv < n(4k/n), a contradiction. Thus cr(CG) ≥ k + 4k/n.

Now, we use the crossing lemma [1] to find that k = Ω(m3/n2) = Ω(n4) and then
obtain that cr(CG) ≥ k + 4k/n = k + Ω(k3/4).

Summary. To put the results of this paper into context, let us review the mo-
tivation behind this paper and suggest some directions for future work. The starting
point of this paper was an attempt to understand Albertson’s conjecture. The results
of the paper (and their proofs) show that the crossing number behavior when adding
an apex vertex is closely related to 1-page drawings, but the exact relationship is quite
subtle.

If we restrict our problem to simple graphs, the family of complete graphs is
(asymptotically) our best-known example for the minimal increase of the crossing
number when the apex is added. This lead us to formulate Conjecture 10. Although
very dense graphs, such as complete graphs, have fewer vertices than sparser graphs
with the same crossing number and thus need fewer connections to be made from the
apex to their vertices, their near-optimal drawings are far from 1-page drawings, and
therefore more crossings are needed. A full understanding of this antinomy would
shed new light on the Harary–Hill conjecture.

Finally, it is worth pointing out that neither an exact nor an approximation algo-
rithm is known for computing the crossing number of graphs of bounded tree-width
(Biedl et al. [7] recently found an approximation algorithm for graphs of bounded
path-width). Adding an apex to a graph increases the tree-width of the graph by
1; thus understanding the crossing number of the cone is an important special case
that would need to be understood before devising an algorithm for general graphs of
bounded tree-width.
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